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Degeneracy points of parameter-dependent Hermitian matrices play a fundamental role in quan-
tum physics, as illustrated by the concept of Berry phase in quantum dynamics, the Weyl semimet-
als in condensed-matter physics, and the robust ground-state degeneracies in topologically ordered
quantum systems. Here, we construct simple ball-and-spring mechanical systems, whose eigenfre-
quency degeneracies mimic the behaviour of degeneracy points of electronic band structures. These
classical-mechanical arrangements can be viewed as ‘de-quantized’ versions of Weyl Josephson cir-
cuits, i.e., superconducting nanostructures proposed recently to mimic band structure effects of Weyl
semimetals. In the mechanical setups we study, we identify degeneracy patterns beyond simple Weyl
points, including the chirality flip effect and a quadratic degeneracy point. Our theoretical work
is a step toward simple and illustrative table-top experiments exploring topological and differential
geometrical aspects of physics.
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I. INTRODUCTION

Topological semimetals have attracted significant at-
tention in recent years due to their unique electronic
properties and potential applications in next-generation
electronics. The electronic band structure of such ma-
terials exhibits degeneracy points, e.g., Weyl points, in
their band structure, at which the energy eigenvalues
disperse linearly. These points act as sources or sinks

of Berry curvature, which leads to a number of interest-
ing phenomena, including Fermi arc surface states, chi-
ral anomaly, and anomalous Hall effect [1–3]. Beyond
Weyl-point physics, robust level degeneracies are essen-
tial ingredients of topological insulators [4], topological
quantum computing [5], and topologically ordered sys-
tems as well [6, 7].

The complexity of real materials with Weyl points in
their electronic band structures often hinders the ob-
servation of the associated geometrical and topological
effects. Because of that, the physical characteristics of
Weyl points are often investigated using metamaterials,
e.g., engineered, artificial crystals whose phononic or pho-
tonic band structures possess Weyl points [8–11].

Alternatively, Weyl points arise and can be studied
in quantum systems with at least 3 control parame-
ters. For example, multiply-connected superconducting
devices [12], including multi-terminal Josephson junc-
tions [13] and the recently proposed Weyl Josephson cir-
cuits [14], can emulate Weyl semimetal band structures,
where, e.g., the magnetic fluxes piercing the loops of the
circuit correspond to the wave vectors of a band struc-
ture. Though multiply connected superconductors are a
promising testbed to emulate and investigate topologi-
cally non-trivial band structures, the realization of such
experiments requires costly, advanced, and challenging
fabrication, as well as millikelvin cooling technology.

In this work, we show that Weyl points and much of
their rich phenomenology can be realized in mechani-
cal ball-and-spring systems, potentially leading to much
simpler and much less costly table-top experiments on
Weyl point physics. Weyl points arise in the parameter-
dependent frequency spectrum of the normal-mode os-
cillations of the proposed ball-and-spring systems. In
the first setup we propose (System A), we illustrate
the appearance of Weyl points, their movement, their
creation and annihilation, highlighting the case when
the spatial symmetry of the setup governs the creation-
annihilation process, enabling the chirality flip effect [15].
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In the second setup we propose (System B), we show
that the parameter-dependent effective dynamical ma-
trix is analogous to the wave-vector dependent effective
Hamiltonian of bilayer graphene [16], which exhibits a
non-generic degeneracy point with topological charge of
2 and local multiplicity (birth quota) of 4 [17].

The rest of the paper is structured as follows. In Sec. II
we introduce preliminary concepts and highlight relevant
background to make this work self-contained. In Sec. III,
we introduce a simple mechanical system (System A)
whose vibrational spectrum contains Weyl points, and we
demonstrate their movement and creation/annihilation,
and the chirality flip effect. In Sec. IV, we discuss the
appearance of a charge-2 Weyl point in another classical
mechanical system (System B). In Sec. V we discuss the
relation to prior work as well as open follow-up problems,
while Sec. VI provides our conclusions.

II. PRELIMINARIES

To ensure that our terminology is well-defined, and to
make this work self-contained, we collect a few prelim-
inary concepts and relations in this section. We start
by connecting elementary geometry with the ‘topological
protection’ or ‘robustness’ of Weyl points in quasiparticle
band structures of 3D crystals.

Consider two arbitrary intersecting curves on the Eu-
clidean plane, as shown by the solid lines in Fig. 1a. No-
tice that in the vicinity of the intersection point, the two
curves are well approximated by straight lines, which
enclose a nonzero angle. This type of intersection of
two curves on the plane is called transversal. In this
case, transversality implies robustness, in the following
sense: If we slightly deform the solid purple curve into
the dashed purple curve, then the intersection point still
exists between the solid black and dashed purple curves,
and these curves still enclose a nonzero angle in the vicin-
ity of the intersection point. This robustness of the in-
tersection point (and the local behavior around the in-
tersection point) is sometimes referred to as ‘protection’
against small ‘deformations’ or ‘perturbations’.

Consider a slightly different situation: two transver-
sally intersecting curves in three-dimensional (3D) Eu-
clidean space, as shown by the solid lines in Fig. 1b.
Such an intersection is transversal, but it is not protected
against small deformations. As shown in Fig. 1b, a small
deformation of one of the lines (dashed purple line) can
lead to an avoidance of the two curves, and correspond-
ingly, the disappearance of the intersection point. How-
ever, if we consider a transversal intersection point of a
line and a surface embedded in 3D Euclidean space, as
shown in Fig. 1c, then the intersection point is protected
again.

These three simple examples of Fig. 1 reveal an in-
teresting property of an isolated transversal intersection
point of two manifolds embedded in a host manifold.
Namely, if the dimension of the host manifold D equals

the sum of the dimensions of the two embedded mani-
folds D1 and D2, that is, D = D1 + D2, then the inter-
section point is protected against any small deformation.
However, if the dimension of the host manifold is greater
than the sum of the two embedded manifolds, that is,
D > D1 + D2, then the intersection point is not pro-
tected.

These observations lead to the often-stated conclu-
sion that a Weyl point in the band structure of a three-
dimensional crystal is protected against small deforma-
tions of the Hamiltonian. In fact, a Hamiltonian describ-
ing such a band structure is a map from the crystal’s Bril-
louin zone (essentially, a 3D torus) to the space of n× n
Hermitian matrices, with an integer n ≥ 2. The matrix
space plays the role of the host manifold. A Hermitian
matrix can be described by the real and imaginary parts
of its matrix elements, that is, this matrix space has di-
mension D = n2. Within this matrix space, the matrices
with a twofold eigenvalue degeneracy (i.e., the matrices
with ith and (i+1)th eigenvalues being equal, but differ-
ent from all other eigenvalues) form a manifold of codi-
mension 3 [12, 18, 19], that is, dimension D1 = n2 − 3.
This manifold is sometimes called a degeneracy stratum.
Furthermore, the image of the 3-dimensional Brillouin
zone via the Hamiltonian map is a manifold in the ma-
trix space, also of dimension D2 = 3. A Weyl point, i.e.,
a twofold degeneracy of the band structure, with linear
dispersion in its vicinity, is in fact a transversal intersec-
tion point between the n2 − 3-dimensional degeneracy
stratum and the 3-dimensional image of the Brillouin
Zone. This, together with the observation in the pre-
ceding paragraph, imply the robustness of a Weyl point
against small perturbations, as stated above.

In the context of electronic (or more generally,
phononic, photonic, magnonic, etc.) band structures, the
Hamiltonian might depend not only on the wave vector
but also on other physical parameters, such as mechanical
strain applied to the crystal. In such a case, it is inter-
esting to consider how the Weyl points move, merge or
are born, as mechanical strain is varied. We will use the
terminology that parameters characterising the position
of the Weyl points are called configuration parameters,
and all other parameters are called control parameters.
In the above example, the configuration space (i.e., the
space of configuration parameters) is the Brillouin zone,
and the control space (the space of control parameters) is
a six-dimensional space describing the mechanical strain
tensor, which is a 3× 3 symmetric real matrix.

So far, we discussed Weyl points in the context of band
structures. However, the mathematical structures used
in the above arguments are more general, they apply
to parameter-dependent Hermitian matrices in general.
Hence, Weyl points arise not only in band structures,
but more generally, e.g., in parameter-dependent quan-
tum systems [12, 18, 20, 21]. If the parameter space of the
quantum system is 3-dimensional, then twofold degener-
ate band crossings do arise typically. If the parameter
space has more than 3 dimensions, then one can identify
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Figure 1. Protected and non-protected intersection points. (a) Two generic intersecting curves (solid grey and purple lines)
on the Euclidean plane. The intersection point is denoted with the upper red dot. Upon a small deformation of the purple
curve (denoted with the dashed curve), the two curves (solid grey and dashed purple) still intersect: the intersection point is
‘protected’. (b) Two intersecting curves (purple and grey solid lines) in 3D Euclidean space. The intersection point is denoted
with a green dot. Upon a small deformation of the purple curve (denoted with the dashed curve), the two curves (solid gray
and dashed purple) avoid each other; the intersection point is ‘not protected’. (c) Curve and surface embedded in 3D Euclidean
space, intersecting transversally. The intersection point is denoted with a red dot. Upon a small deformation of the purple
curve (denoted with the dashed curve), the intersection point is shifted, but still exists; the intersection point is ‘protected’.
Panels (a) and (c) show minimal models of ‘protected’ Weyl points of Weyl semimetals: the host space models the space of
Hermitian matrices, the solid purple line models the image of the Hamiltonian map from the Brillouin zone to the space of
Hermitian matrices, and the black line/surface models the stratum of the matrix space with a twofold degeneracy.

a 3 dimensional parameter manifold as the configuration
space, and the complementary parameter manifold as the
control space. In this picture, the Weyl points are mov-
ing in the configurational space as the control parameters
are varied. Although for 3D band structures, the natural
configuration space is the Brillouin zone, which is a 3D
torus, in a more general setting, the configuration space
does not have to be a torus, see, e.g., [20, 21].

As argued above, the appearance of Weyl points in
band structures of 3D materials is rather natural. How-
ever, other types of twofold degeneracies can be achieved
by fine-tuning or symmetries. For example, it has been
argued in [22] that crystalline symmetries can ‘stabi-
lize’ or ‘protect’ three other types of twofold degeneracy
points, which are called charge-2 Weyl point, charge-3
Weyl point, and charge-4 Weyl point. These degener-
acy points differ from Weyl points (which are sometimes
called charge-1 Weyl points) in the following respects: (1)
their dispersion relation is non-linear, (2) they are not ro-
bust against symmetry-breaking perturbations, i.e., they
can be ‘dissolved’ to a set of Weyl points if the Hamil-
tonian is perturbed such that the symmetry is not pre-
served; correspondingly, they are often referred to as non-
protected or non-generic.

The study of Weyl points and non-generic degeneracy
structures have been proposed recently in multi-terminal
Josephson circuits [13, 14]. In particular, in the pro-
posal of Weyl Josephson Circuits [14], whose quantum-
mechanical Hamiltonian is a parameter-dependent Her-
mitian matrix, magnetic fluxes and gate voltages play the
role of the parameters. Furthermore, the corresponding
parameter spaces are cyclic, similarly to the Brillouin

zone of crystals. Because of the strong analogy, it has
been argued that Weyl Josephson Circuits can emulate
Weyl points and non-generic degeneracy patterns in band
structures [14, 23]. Such non-generic degeneracy patterns
may include the creation or annihilation of Weyl points,
the presence of non-generic isolated degeneracy points
and their dissolution to Weyl points upon deformation
of the Hamiltonian [17, 24], nodal lines [14] or surfaces,
Weyl-point teleportation [23], symmetry-constrained chi-
rality flip processes [15], etc.

Our present work builds upon the latter idea of emulat-
ing band-structure effects, but translates it to a simple
classical mechanical setting: a system of linearly cou-
pled harmonic oscillators, or more specifically, a ball-
and-spring system. Such a system is described by a
dynamical matrix D, which is a real symmetric n × n
matrix, where the integer n ≥ 2 is the number of coor-
dinates. For example, in the setup in Fig. 2a, the point
mass (green circle) can move in two dimensions, hence
n = 2. Note also that the dynamical matrix D has
non-negative eigenvalues λ1, . . . , λn ≥ 0, whose square
roots ωj =

√
λj , (j = 1, . . . , n) provide the normal-mode

eigenfrequencies.
In fact, the dynamical matrix is a function of the pa-

rameters characterising the system, D = D(p), where
p is the vector of parameters, e.g., spring constants and
unstretched spring lengths. Notice that this setting is
similar to that of parameter-dependent Hermitian matri-
ces, with the important difference that the surface in the
space of real symmetric matrices on which an eigenvalue
is twofold degenerate has codimension 2 [18], unlike the
Hermitian case discussed above, with codimension 3.
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As a consequence, 2D variants of Weyl points, i.e.,
point-like twofold frequency degeneracies with linear dis-
persion in their vicinity, typically appear in classical me-
chanical systems described by a dynamical matrix D(p),
when two parameters of the vector p are varied. This
observation suggests that to emulate some of the band
structure effects listed above, it might be sufficient to en-
gineer tunable classical mechanical ball-and-spring sys-
tems. This is what we pursue in this work.

III. MECHANICAL 2D WEYL POINTS, THEIR
CREATION AND ANNIHILATION, AND THE

CHIRALITY FLIP

In this section, we introduce a classical system com-
posed of balls and springs, whose vibrational spectrum
emulates a number of Weyl-point-related features of elec-
tronic band structures of crystals. To enhance the anal-
ogy between our setup and band structures, we engineer
the configurational parameter space to have torus topol-
ogy, similarly to the Brillouin zone. Our mechanical sys-
tem, depicted in Fig. 2a, to be referred to as System
A, exhibits the following features: (i) the existence of 2D
Weyl points in the configurational space for fixed control-
parameter vector. (ii) The movement of 2D Weyl points
in the configurational space, as the control vector is var-
ied. (iii) Creation and annihilation of oppositely charged
Weyl-point pairs as the control vector is varied. (iv) the
‘chirality flip’ effect [15], which is a special type of Weyl-
point creation/annihilation promoted by the symmetry
of the system.

The setup, shown in Fig. 2a, consists of a point mass
m, three springs, and two rings. The motion of the mass
is restricted to the plane of the figure, and the orientation
of the x-y reference frame is also shown. The centers of
the rings are located at the points (x, y) = (−d/2− r1, 0)
and (x, y) = (d/2+r2, 0), and the radii of the rings are r1

and r2, respectively. On each ring, a spring is attached
to a point of the ring, and the other ends of the two
springs are attached to the mass. The two suspension
points on the two rings are parametrised by the angles α
and β. The top end of the third spring is attached to the
suspension point at (0, R). The springs are characterised
by their spring constants kj and rest lengths lj . The
mass, whose vibrational modes we are interested in, is
attached to these springs, and its equilibrium position
depends on the system parameters.

The number of parameters of this setup is 13. In what
follows we consider the angle parameters α and β as con-
figuration parameters, and call others the control param-
eters. Therefore, the topology of the configuration space
BA = [−π, π)× [−π, π) is a torus, similar to the Brillouin
zone of a 2D crystal. The 11 control parameters are pos-
itive real numbers which we collect into a vector t. In
what follows we use SI units for all physical quantities
and omit units when specifying parameter values.

The key quantities we will describe here are the eigen-

frequencies of the small oscillations (normal modes) of
the mass in this setup. For a fixed set of control pa-
rameters (i.e., for a fixed control vector t), we define the
mapping ωt : BA → R2

+ that assigns the eigenfrequencies
of the system to each point of the configuration space in
such a way that the first component is the greater eigen-
frequency. The eigenfrequencies are the square roots of
the eigenvalues of the dynamical matrix of the system.

Since System A consists of a single mass with its mo-
tion restricted to two dimensions, its dynamical matrix
is a matrix in Sym2(R), the vector space of 2 × 2 real
symmetric matrices. It is instructive to decompose the
dynamical matrix as a linear combination of Pauli ma-
trices; this reads

D(α, β) = dx(α, β)σx + dz(α, β)σz, (1)

where σx and σz are the Pauli X and Z matrices, the
dependence on α and β is explicitly denoted, while the
dependence on t is omitted for brevity.

The normal modes of this mechanical system exhibit
the Weyl-point features (i)-(iv) listed above, as shown in
Figs. 2b, c, d. To obtain these results, we have computed
the dynamical matrix, and from that, the eigenfrequency
spectrum ωt, as described in Appendix A.

(i) Existence of Weyl points. The eigenfrequency spec-
trum of System A is plotted as function of the configu-
rational parameters α and β, for a fixed control vector,
in Fig. 2b, see caption for parameter values. The spec-
trum contains two 2D Weyl points, indicated as the red
and blue points, where the vibrational eigenfrequencies
are degenerate. Each of the band crossing points seen in
Fig. 2b has a nonzero topological charge. The topological
charge of a 2D Weyl point, analogous to the Chern num-
ber of Weyl points in 3D band structures, is the wind-
ing number of the vector field (dx, dz) for a loop in the
configurational space enclosing the degeneracy point. In
Fig. 2b, red (blue) points denote topological charge +1
(−1). As illustrated in the figure, the sum of the topo-
logical charges of the Weyl points is zero.

(ii) Movement of Weyl points. By changing the control
parameters t, the Weyl points trace out a trajectory in
the configuration space. This is shown in Fig. 2c, as the
spring constant k3 is varied, all other control parameters
being fixed. The blue/red colors correspond to the topo-
logical charge. Darker Weyl points correspond to greater
k3 values. The darkest points correspond to the param-
eters of Fig. 2b.

(iii) Creation and annihilation of Weyl points. Con-
sider the scenario when the third spring is taken out of
the system, which corresponds to a control vector t with
k3 = 0. In this case, there are no Weyl points in the con-
figuration space, because the longitudinal normal mode
has a higher frequency than the transversal mode. Con-
tinuously increasing the spring constant k3 from zero to
k3 = 0.76, Weyl points are still absent. Increasing k3

further, to k3 = 0.78, we observe the creation of two
Weyl points, depicted as the faintest red and blue points
in Fig. 2c. These Weyl points move away from each
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chirality flip

Figure 2. Weyl points and their movement and creation/annihilation in a mechanical system. (a) Layout of System A.
Green circle: point mass m moving in the plane. (b) Mode eigenfrequencies as function of configuration parameters α and
β, exhibiting a positively (negatively) charged Weyl point depicted as the red (blue) point. Control parameters: r1 = 2.6,
r2 = 2, k1 = k2 = 1, l1 = l2 = 6, d = 20, R = 10, l3 = 10 and k3 = 0.86. Eigenfrequencies were obtained numerically for
discrete (α, β) values on a 61× 61 grid. (c) Weyl points and their movement in the configurational space with varying spring
constant k3 ∈ (0.76, 0.78, 0.80, 0.82, 0.84, 0.86) (further control parameters as in Fig. 2b). Darker circles depict Weyl points at
higher k3 values. (d) Symmetry-induced chirality flip effect. Evolution of Weyl points is shown as spring constant is changed
as k3 ∈ (0.96, 1.0, 1.04, 1.08, 1.12), using the symmetric control-parameter set r1 = r2 = 2, k1 = k2 = 1, l1 = l2 = 6, d = 20,
R = 10, l3 = 10 and changing Darker circles denote the Weyl points for higher k3 values. For k3 = 0.96, there are 4 Weyl
points in the spectrum (faintest points). By increasing k3, the Weyl points move in the spectrum along symmetry-constrained
trajectories. By changing k3 = 1.04 to k3 = 1.08 the chirality of one Weyl point flips while merging with 2 Weyl points of
charge +1. The Weyl points located outside the symmetry line are mirror symmetric partners of each other due to the mirror
symmetry of the control parameters.

other by further increasing k3, as shown in Fig. 2c. This
shows that transition patterns between different Weyl-
point configurations can be studied in such a mechanical
system.

(iv) Chirality flip. The chirality flip effect has been the-
oretically described in [15]. The crystal studied there has
a high-symmetry plane, which imposes symmetry con-
straints on the Weyl points and their motion as a varying
mechanical strain is applied to the crystal (see Fig. 3d in
[15]). Strain plays the role of a control parameter, and
the Brillouin zone is the configuration space. Before ap-
plying strain, a negatively charged Weyl point resides
in the high-symmetry plane of the Brillouin zone, and a
mirror-symmetric pair of positively charged Weyl points

resides on the two sides of the plane. As strain is in-
creased, the off-plane Weyl points approach the in-plane
Weyl point. At a critical value of the strain, the three
Weyl points merge, and for further increase of the strain,
only a single positively charged Weyl point remains in the
plane. From the viewpoint of the in-plane Weyl point, it
has undergone a flip of its topological charge from nega-
tive to positive, hence the name ‘chirality flip’.

An analogous effect is observed in System A, if we
consider a special symmetric configuration of the latter,
when the control parameters fulfill r1 = r2, k1 = k2,
l1 = l2. In this case, the diagonal line α = β of the config-
urational space is analogous to the high-symmetry plane
of the Brillouin zone in [15]. Furthermore, the Pauli coef-
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ficients of the dynamical matrix, defined in Eq.(1), have
the following symmetry relations:

dz(α, β) = dz(β, α), (2a)

dx(α, β) = −dx(β, α). (2b)

These relations enforce a vanishing dx component on the
symmetry line, that is, dx(α, α) = 0. A further con-
sequence of Eq.(2) is that the spectrum is symmetric,
ω(α, β) = ω(β, α) for both bands. Furthermore, the
Weyl points appear in the configurational space sym-
metrically, such that mirror-symmetric partners have the
same charge (see Fig. 2d).

The chirality flip effect in System A is illustrated in
Fig. 2d. For a symmetric control parameter set (see cap-
tion), we plot the Weyl points as the spring constant
k3 is increased. Initially, there are 4 Weyl points, 2 of
them (faint blue) on the symmetry line, 2 of them form-
ing a mirror pair off the symmetry line (faint red). By
increasing k3, the two off-line red Weyl points approach
the symmetry axis, and merge with a blue Weyl point,
leaving behind a single red Weyl point (dark red) on the
axis – a clear manifestation of a chirality flip.

IV. MECHANICAL CHARGE-2 WEYL POINT

In the simplest tight-binding model of the electronic
band structure of bilayer graphene, a non-generic degen-
eracy point appears at the K point of the Brillouin Zone.
In the vicinity of the K point, the electronic states are
described approximately by the following effective Hamil-
tonian: [16]

Heff(kx, ky) =
~2

2m

(
0 (kx − iky)2

(kx + iky)2 0

)
. (3)

Here, m is the effective mass of the electrons, and kx and
ky are the wave vectors measured from the K point. As
discussed above, in this band structure setting, kx and
ky are the configuration parameters.

In this section, we introduce a classical ball-and-spring
system that emulates the non-generic degeneracy point
of bilayer graphene described by Eq. (3). First, we sum-
marize the known characteristic properties of the latter
(see (i)-(iv) below), show that the ball-and-spring sys-
tem indeed emulates most of those properties, and also
prove a specific mathematical equivalence (linear right
equivalence) between the two systems.

A. Electrons in bilayer graphene

(i) Quadratic dispersion. Eq. (3) is an effective Hamil-
tonian for electrons in bilayer graphene in the vicinity
of the K point. We will use the Pauli-matrix decom-
position of this effective Hamiltonian. This reads, omit-
ting the constant ~2/2m, asHeff(kx, ky) = hx(kx, ky)σx+

hy(kx, ky)σy, where the coefficients are:

hx(ky, ky) = k2
x − k2

y, (4a)

hy(kx, ky) = 2kxky. (4b)

The difference between the eigenvalues of Heff is pro-
portional to

√
h2
x + h2

y = k2
x + k2

y. Hence, we say that
the degeneracy at (kx, ky) = 0 splits quadratically as the
function of the configurational parameters (i.e., the wave
vector).

(ii) Topological charge is 2. Similarly to the topological
charge of the (dx, dz) vector field, described in Sec. III
as a winding number around the degeneracy point in the
origin of the configurational space, a topological charge is
also associated to degeneracy point of the (hx, hy) vector
field. In fact, the topological charge of the latter is 2.
(Note that in a mathematical context, the term ‘local
degree’ is used for the topological charge.)

(iii) Local multiplicity is 4. In [17] it is shown that iso-
lated twofold degeneracy points have, besides the topo-
logical charge, another characteristic, the local multiplic-
ity. The local multiplicity associated to such a degener-
acy point is a positive integer. In particular, for bilayer
graphene, the local multiplicity associated to the vector
field (hx, hy) is 4.

(iv) Perturbations can dissolve the quadratic degen-
eracy point into 2 or 4 Weyl points. Upon a generic
‘perturbation’ or ‘deformation’ of the Hamiltonian, i.e.,
upon a generic continuous displacement in the control
space, the degeneracy point is continuously dissolved
into Weyl points. The absolute value of the topologi-
cal charge determines the minimum number of newborn
Weyl points in that situation. The local multiplicity de-
termines the maximum number of newborn Weyl points
[17]. Combining these general rules with (ii) and (iii)
above, it is concluded for the degeneracy point of bilayer
graphene that perturbations can dissolve it into 2 or 4
Weyl points. For example, extending the simplest tight-
binding model of bilayer graphene by including an addi-
tional hopping amplitude induces a perturbation to Heff
which dissolves the quadratic degeneracy points into four
Weyl points, known as the ‘trigonal warping’ effect. On
the other hand, adding mechanical strain to the tight-
binding model perturbs Heff such that it dissolves the
quadratic degeneracy point into two Weyl points. Note
also that the topological charge is conserved in these tran-
sitions.

B. Vibrations of System B

Here, we propose and study a classical ball-and-spring
mechanical system whose parameter-dependent eigenfre-
quency spectrum shares the characteristics of bilayer
graphene described in the previous section.

The mechanical system we study here, to be called
System B, is shown in Fig. 3a. It consists of three point
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Figure 3. Quadratic degeneracy point in a mechanical system, emulating the electronic band degeneracy in bilayer graphene.
(a) Layout of System B. Green circles denote masses that move in the 2D plane. (b) Frequency gap in the vibrational spectrum
for System B for ki = 1, mi = 1 and α = β = π/3, as function of the mass detunings. Only the difference of the 4th and 5th
eigenfrequency is shown. The degeneracy splits as a quadratic function of the mass detunings ∆m1,2. The difference of the
eigenfrequencies was calculated on a 101× 101 grid. (c) Evolution of Weyl points in the configuration space of mass detunings
as the spring constant ∆k1 = (2, 4, 8, 16, 32) · 10−5 is varied. Control parameters: ∆k2 = ∆k3 = 0, ∆α = ∆β = 0. Due to
changing ∆k1, the quadratic degeneracy point dissolves into 2 Weyl points of charge +1, mimicking a similar effect in bilayer
graphene caused by varying mechanical strain.

masses (mi, i ∈ {1, 2, 3}), connected with three springs
with spring constants ki and rest lengths li. The masses
can move only in the plane, i.e., their positions are de-
scribed by 6 Cartesian coordinates altogether. As before,
we will focus on the eigenfrequencies of small, close-to-
equilibrium oscillations of the system. In equilibrium, the
masses form a triangle whose geometry is determined by
the rest lengths li, which are assumed to fulfill the tri-
angle inequalities. Equivalently, we can characterize the
triangle by two angles α and β, and a single rest length,
i.e. l1. We will use this latter parametrization, and will
omit l1, as its value does not affect the normal modes of
the system.

We specify reference values for our parameters as
m

(0)
i = 1, k(0)

i = 1, α(0) = β(0) = π/3. Correspondingly,
we introduce detunings, i.e., parameters relative to the
reference values, via ∆ki = ki − k(0)

i , ∆mi = mi −m(0)
i ,

∆α = α − α(0) and ∆β = β − β(0). These detunings
can be thought of as perturbations of parameters with
respect to their reference values. We set ∆m3 = 0 and
∆k3 = 0, without the loss of generality. Hence, the total
number of parameters of the system is 6, listed as ∆k1,2,
∆m1,2, ∆α, and ∆β.

We define the configuration space parameters as
∆m1,2, and the control parameters as ∆k1,2, ∆α and
∆β . The latter 4 parameters are collected in the con-
trol vector t. In our figures, we will focus on a small
region of the configuration space, i.e., (∆m1,∆m2) ∈
[−0.05, 0.05]× [−0.05, 0.05].

At this point, we can anticipate the twofold spectral de-
generacy of this mechanical setup, which will play the role
of the twofold spectral degeneracy ofHeff(kx = 0, ky = 0)
of Eq. (3). System B is described by 6 coordinates, hence
its dynamical matrix, describing the normal modes, is
a 6 × 6 real symmetric matrix, depending on the con-
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figuration and control parameters. Consider the case
when all detunings are set to zero: ∆m1 = ∆m2 = 0
and t = 0. Then the point masses form an equilat-
eral triangle, and the symmetry group of the system is
the dihedral group D3. This group does have a two-
dimensional irreducible representation (irrep), suggesting
that the normal-mode eigenfrequency spectrum might
have a symmetry-protected twofold degeneracy.

We do find that this is indeed the case, for this zero-
detuning case, the 4th and 5th eigenfrequencies (counting
from lowest to highest) are degenerate, and the modes
transform according to the two-dimensional E irrep of
D3. This degeneracy is split as we move away from the
origin of the configuration space (∆m1,2 = 0) and hence
break the symmetry.

The 6×6 dynamical matrix of System B has three nor-
mal modes with zero eigenfrequencies. These correspond
to the two independent translations and the single rota-
tion of the system. The remaining three normal modes
have non-zero eigenfrequencies, and for t = 0, ∆m1,2 = 0
there is a single degenerate pair of normal modes with fi-
nite frequency. For a fixed value of control parameters t,
we define the mapping ωt : BB → R2

+ that assigns those
eigenfrequencies to each point of the configuration space,
which are degenerate in the symmetric case. Here, BB
denotes the configuration space.

(i) Quadratic dispersion. For zero detuning of the con-
trol parameters, the splitting of the degenerate eigenfre-
quencies is of second order in the configuration parame-
ters ∆m1,2. This quadratic dispersion in the configura-
tion space is illustrated in Fig. 3b, where the difference
of the eigenfrequencies, obtained from numerical diago-
nalization of the dynamical matrix, is plotted for t = 0.

The quadratic splitting of the degenerate frequencies
can also be proven analytically, as discussed in App. B.
To this end, we express the effective 2×2 dynamical ma-
trix Deff of the quasi-degenerate subspace; the explicit
form is shown in Eq. (B16). This matrix Deff is obtained
perturbatively in the configuration parameters, at the
symmetric control point t = 0, using second-order quasi-
degenerate (Schrieffer-Wolff) perturbation theory. Ne-
glecting the unit-matrix term in the effective dynamical
matrix, we obtain

D̃eff = dx(mx,my)σx + dz(mx,my)σz, (5)

where

dx(mx,my) = −
√

3

12
m2
x +

√
3

12
m2
y, (6a)

dz(mx,my) =
1

12
m2
x −

1

3
mxmy +

1

12
m2
y. (6b)

Here, we have introduced the simplified notation mx =
∆m1 and my = ∆m2. The fact that dx and dz are sec-
ond order in the configuration parameter implies that
quadratic dispersion.

(ii) Topological charge is 2. This result can be obtained
from a numerical evaluation of the winding number of the

vector field (dx, dz), or can be read off from a visualisation
of the vector field.

(iii) Local multiplicity is 4. This result can be obtained
using any of the methods for calculation of the local mul-
tiplicity, outlined in [17].

(iv) Deformations can dissolve the quadratic degener-
acy point into 2 or 4 Weyl points. Upon generic deforma-
tion (i.e., change of the control vector), a non-generic de-
generacy point, such as the quadratic degeneracy points
studied here, is dissolved to Weyl points. The absolute
value of the topological charge (local multiplicity) of the
original degeneracy point is a lower (upper) bound on the
number of newborn Weyl points [17]. Because of (ii) and
(iii) above, we expect that deformations of System B can
dissolve the quadratic degeneracy point into two or four
Weyl points.

We do confirm the two-Weyl-point scenario, which is
illustrated in Fig. 3c. There, the green circle depicts the
quadratic degeneracy point at t = 0. The red points
show how that is dissolved to two Weyl points, one on
the left, one on the right, each with unit positive charge,
as the control parameter ∆k1 is increased from zero.

We leave it as an interesting open question if the four-
Weyl-point scenario, emulating the trigonal warping ef-
fect in the bilayer graphene band structure [16], can be
realized in this physical setting. Without any detail, we
do confirm that the four-Weyl-point scenario can be re-
alized in a mathematical sense by the deformation

D̃eff 7→ D̃eff + λ(umx + vmy)σx − λ(wmx + zmy)σz,(7)

where the coefficients are defined in Eq. (12). For ex-
ample, we have checked numerically (not shown) that
four Weyl points are born from the quadratic degener-
acy point if the above deformation is applied such that
0 < λ < 10−2. However, we do not know if such a de-
formation can be realized in a physical sense, that is, by
tuning the physical parameters in the control vector t as
D̃eff 7→ D̃t,eff.

C. Bilayer graphene and System B are linear right
equivalent

We have just shown that the characteristic properties
(i)-(iv) of the bilayer graphene effective Hamiltonian Heff
are shared by those of the effective dynamical matrix Deff
of System B. Here, we show that in fact, Heff and Deff are
equivalent in a specific mathematical sense: they are lin-
ear right equivalent. This explains the strong similarities
in their properties.

The mappings d and h are said to be right-equivalent
if there exists a diffeomorphism f : BB → BH such that
the equality

d(mx,my) = (h ◦ f)(mx,my) (8)

hold for all (mx,my) ∈ BB . To obtain the diffeomor-
phism f we assume that it is a linear map and can be
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characterized by a 2× 2 real matrix

F =

(
u v
w z

)
, (9)

such that

f(mx,my) = F

(
mx

my

)
. (10)

Inserting the defining equations of the mappings h
(Eq.(4)), d (Eq. (6)) and f (Eq. (10)) into Eq. (8), and us-
ing the identifications mx ≡ kx and my ≡ ky, we find the
following 6 equations for the unknown matrix elements
of F :

u2 − w2 = −
√

3

12
, (11a)

v2 − z2 =

√
3

12
, (11b)

uv − wz = 0, (11c)

uw =
1

24
, (11d)

vz =
1

24
, (11e)

uz + vw = −1

6
. (11f)

Remarkably, the above system of equations is solvable,
Solving the above system of equations yields

u = −1

2

√
2−
√

3

6
, (12a)

v = +
1

2

√
2 +
√

3

6
, (12b)

w = −1

2

√
2 +
√

3

6
, (12c)

z = +
1

2

√
2−
√

3

6
. (12d)

Note that the matrix F defined by this solution is invert-
ible, implying that the corresponding map f is indeed
a diffeomorphism. Note also that simultaneous sign flip
of the matrix elements in Eq. (12) yields an alternative
solution.

With this, we have shown that the local vector fields
d and h which describe fundamentally different physical
systems are right-equivalent. This explains the similari-
ties of their characteristics discussed above.

V. DISCUSSION

A. Relation to prior work

Translation invariance vs. spatial compactness. En-
gineered, macroscopic mechanical systems have already
been studied to investigate topological effects arising in
band structures. The studies we are aware of rely on the
concept of translationally invariant, crystal-like metama-
terials, where concepts such as wave vectors and Brillouin
zone arise naturally. These systems involve an extensive
number of degrees of freedom. [8, 9, 25] In contrast, in
this work, we propose and study spatially compact me-
chanical setups, consisting only of a few ingredients. In
the systems we consider, the configurational parameters
are only analogous to the wave vector. An inherent ad-
vantage of these setups is that only a few system elements
and a few degrees of freedom have to be controlled.
Simplification and ‘de-quantization’ of the Weyl

Josephson Circuit idea. This work is partly inspired
by the prior proposals of emulating band-structure ef-
fects using multiply connected superconducting devices
[12–14]. We think that spatially compact mechanical se-
tups such as those studied in this work can provide a
simplified, cost-efficient, and ‘de-quantized’ alternative
platform for such emulator experiments. With table-top
mechanical setups, the need for highly specialized fab-
rication and refrigeration technology is alleviated. Fur-
thermore, measurement technology based on complex mi-
crowave sources and detectors for superconducting cir-
cuits can probably be substituted by more basic equip-
ment (e.g., cameras or microphones for data acquisition,
sound or ultrasound generators as driving sources), for
mechanical experiments.
Exploring degeneracy points in various matrix spaces.

Mechanical systems can also be regarded as complemen-
tary to superconducting devices, in the sense that they
cover different matrix spaces. Namely, superconduct-
ing circuits provide access to degeneracy structures of
particle-hole-symmetric [13] and Hermitian [14] matri-
ces, whereas spatially compact mechanical systems are
described by real symmetric matrices.

B. Open problems

In-situ control of parameters in a mechanical setup. In
our work, we study how the eigenfrequencies of coupled
mechanical oscillators change as parameters are varied.
A brute-force experimental realisation of the effects dis-
cussed here should be possible by fabricating and measur-
ing many different samples, which have fixed but different
parameter values. An interesting experimental challenge
is to find means for in-situ parameter control. This would
alleviate the need to fabricate as many samples as many
parameter settings are to be investigated.
Frequency degeneracy points in spatially compact clas-

sical ac electronic circuits. Besides the mechanical setups
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considered here, another class of classical systems where
the physics of degeneracy points can be studied is that
of ac electronic circuits. Emulating topological materi-
als using translational invariant circuits (‘topoelectrical
circuits’) is a field that already exists [26, 27].
Trigonal warping of bilayer graphene. As discussed in

Sec. IVB, our System B emulates the quadratic degen-
eracy point of bilayer graphene, but we have not found a
perturbation respecting the physical constraints of Sys-
tem B that emulates the trigonal warping effect known
bilayer graphene. This remains an interesting open prob-
lem.
A systematic construction of mechanical systems em-

ulating band-structure effects. In this work, we have
identified two mechanical setups where interesting Weyl-
point properties known from condensed-matter theory
can be emulated. These mechanical setups were found
intuitively. A natural follow-up open problem is as fol-
lows: given a condensed-matter band structure model
(e.g., electronic, phononic, magnonic) with an interest-
ing band degeneracy pattern (e.g., non-generic degener-
acy point, nodal loop, nodal surface, etc.), is it possible
to systematically construct a spatially compact mechani-
cal emulator reproducing that pattern? System A in our
work illustrates that the torus topology of the Brillouin
zone can be emulated, e.g., using suspension loops.
Replacing a cold-atom experiment with classical me-

chanics. In a recent breakthrough study [28], the au-
thors performed an experiment using ultracold atoms,
which used a dynamical method to probe the winding
numbers of a linear and a quadratic degeneracy point
in the momentum space of a honeycomb lattice. Such
an experiment requires a highly coherent atomic ensem-
ble and advanced control and measurement technology.
Our present work proves that degeneracy points with
quadratic splitting can be engineered in simple mechan-
ical systems, hence it highlights the opportunity of re-
peating the cold-atom experiment using only classical
mechanics. Such a mechanical experiment would rely
on the in-situ time-dependent tunability of the system
parameters, as discussed above.
Expanding the classification of isolated twofold degen-

eracy points in crystals. In [22], band degeneracies in
time-reversal invariant crystalline band structures were
classified, and four distinct types of twofold degenerate
isolated degeneracy points were identified. In our work,
we have illustrated two of those four types: Weyl points
and quadratic degeneracy points (identified as charge-2
Weyl points in [22]). An open challenge is to engineer
mechanical systems where the other two types of degen-
eracy points (charge-3 and charge-4 Weyl points) arise. A
further idea is to exploit the fact that spatially compact
mechanical oscillators are free of the strong constraints
imposed by crystal symmetries, hence they could be used
to realize more ‘exotic’ degeneracy point types which are
impossible to realize in crystalline band structures. Sim-
ilar questions arise in the context of higher-order degen-
eracy points, i.e., degeneracies where more than 2 normal

modes share the same eigenfrequency [29].

VI. CONCLUSION

We have proposed simple ball-and-spring setups which
illustrate that Weyl points and their associated features,
characteristic of crystalline band structures, can be em-
ulated in classical mechanical systems. We have shown
that the parameter-dependent eigenfrequency spectrum
of spatially compact ball-and-spring systems can ex-
hibit (i) the appearance of Weyl points, (ii) the move-
ment of Weyl points, (iii) the creation/annihilation of
Weyl points, (iv) the chirality flip effect, an exam-
ple of symmetry-constrained creation/annihilation, (v)
quadratic degeneracy points and their dissolution to
Weyl points. Our work opens a route toward table-top
experiments on Weyl point physics, enabling the explo-
ration of effects that have been proposed or realized with
coherent quantum systems.
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Appendix A: The spectrum of System A

In this section, we discuss the calculation of the spec-
trum of System A. The calculation involves the determi-
nation of the equilibrium position of the mass, which we
carry out numerically. Hence, the dynamical matrix and
the eigenfrequency spectrum is also computed numeri-
cally.

The spectrum is defined as a map that assigns the
two eigenfrequencies of the system to each angle pair
(α, β) ∈ BA. An important step toward calculating the
frequencies of small oscillations around equilibrium is to
Taylor-expand the position-dependent elastic potential
around the equilibrium position. The elastic potential
is the sum of the spring potentials:

Ut(x, y) =
1

2

3∑
i=1

ki∆l
2
i , (A1)

where ∆li is the elongation of the i-th spring. Recall that
the vector t contains the control parameters of the sys-
tem, i.e., all parameters except the angles α and β. As a
function of the position of the point mass, the elongations
can be written as

∆li =
√

(xi − x)2 + (yi − y)2 − li, (A2)
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where (xi, yi) is the suspension point of the i-th spring,
and li is the rest length of the spring.

The coordinates (xi, yi) for the three springs can be
written as

x1 = −d/2− r1(1− cos(α)), (A3a)

y1 = r1 sin(α), (A3b)

x2 = d/2 + r2(1− cos(β)), (A3c)

y2 = r2 sin(β), (A3d)

x3 = 0, (A3e)

y3 = R. (A3f)

In equilibrium, the elastic potential Ut is minimized
over the position of the point mass. To determine the
eigenfrequencies, we calculate the equilibrium coordi-
nates of the body. This is done by solving

∇Ut = 0, (A4)

which is a system of nonlinear equations. We obtain the
solution numerically for a specific set of parameters, using
the built-in methods of Scipy.

Given the equilibrium position of the mass (x0, y0), its
small oscillations are governed by the linearized Newton
equations

mẍ = −(∂2
xUt)x− (∂x∂yUt)y, (A5a)

mÿ = −(∂x∂yUt)x− (∂2
yUt)y, (A5b)

where the coordinates x and y are relative coordinates
with respect to the equilibrium coordinates, and the
restoring force has been linearized in the relative coor-
dinates. Furthermore, in Eq. (A5), the second-order par-
tial derivatives of the potential Ut are evaluated at the
equilibrium position (x0, y0).

We collect the displacements x and y into a single vec-
tor

Y =
√
m

(
x
y

)
(A6)

with which the linearized Newton equations can be writ-
ten in a compact form

Ÿ = − 1

m
DtY, (A7)

where we have introduced the Hessian of the elastic po-
tential at (x0, y0):

Dt =

(
∂2
xUt ∂x∂yUt

∂x∂yUt ∂2
yUt

)
. (A8)

Then, we make use of the fact that we are looking for vi-
brational modes fulfilling Ÿ = −ω2Y. Hence, we obtain

the linearized Newton equation to the following eigen-
value equation:

ω2Y =
1

m
DtY. (A9)

The matrix on the right-hand side,

Dt =
1

m
Dt, (A10)

is the dynamical matrix of the system.
The mode eigenfrequencies are obtained by taking the

square root of the eigenvalues of the dynamical matrix
Dt. The square roots of the eigenvalues are positive as
long as the Hessian is positive-definite, which is guaran-
teed in case of a stable equilibrium position. The po-
tential Ut depends on the angles α and β through the
positions x1,2, y1,2 of Eq. (A3) hence the above method
provides the spectrum ωt : BA → R2

+ of System A.
In Sec. III, the topological charge of the Weyl points

is introduced as the winding number of the vector field
(dx, dz), the latter being obtained from the Pauli decom-
position of the (α, β)-dependent dynamical matrix. This
topological charge is defined as the integral

q =
1

2π

∫
C

(
d̃(ϕ)× d

dϕ
d̃(ϕ)

)
3

dϕ, (A11)

where we have introduced

d̃ =
d

|d|
(A12)

with d = (dx, dz, 0), and have used the 3D cross product
(×) and the notation ()3 referring to the third component
of a three-component vector. The integration contour C
encircles the degeneracy point (and only this degeneracy
point) and is parametrized by the angle variable ϕ ∈
[0, 2π).

Below, we introduce the method we used to locate
the Weyl points in the configuration space, and compute
their topological charges, using the (dx, dz) vector field.
The calculation of the topological charge is based on a
discretization of the integral of Eq. (A11) on a finite grid.

First, we discretize the configuration space to create a
uniform grid of (N + 1) × (N + 1) points characterized
by coordinates (αj , βk). The spacing of the coordinates is
δα = δβ = 2π

N and the coordinates (αj , βk) correspond to
the point (−π+j ·δα,−π+k ·δβ) with j, k ∈ {0, 1, . . . N}.
We remark that by using this set of points, we over-
count certain points of the configuration space, e.g. the
(α0, β0) = (α0, βn) = (αn, βn) = (αn, β0) all correspond
to the same point of the configuration space.

Then, we assign numbers to vertices, edges, and pla-
quettes of the grid as follows. We find the dynami-
cal matrix and obtain the (d

(j,k)
x , d

(j,k)
z ) vector field at

the vertices of the grid, where the superscript (j, k) de-
notes the discrete coordinates (αj , βk). Then, we cal-
culate the phase of the vector (d

(j,k)
x , d

(j,k)
z ) as φ(j,k) =

atan2(d
(j,k)
z , d

(j,k)
x ) ∈ (−π, π]. We assign this phase to
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each vertex of the grid. In the case of the edges, we cal-
culate the phase difference between neighboring vertices
(j, k) and (j′, k′) as

Φ(j,k)→(j′,k′) = arg
(

exp
(
iφ(j′,k′) − iφ(j,k)

))
,(A13)

where (j′, k′) denotes a neighbour of (j, k), i.e. (j+ 1, k),
(j − 1, k), (j, k + 1) or (j, k − 1). In such a way, we
assign a phase difference to each oriented edge of the
grid. Note that Φ depends on the orientation of the path
Φ(j,k)→(j′,k′) 6= Φ(j,k)←(j′,k′).

Finally, we assign the integer (vortex number)

Q(j,k) =
1

2π

(
Φ(j,k)→(j+1,k) + Φ(j+1,k)→(j+1,k+1)+

+ Φ(j+1,k+1)→(j,k+1) + Φ(j,k+1)→(j,k)
)

(A14)

to the plaquette (j, k). Q(j,k) indicates the winding of
the (dx, dz) vector field on the boundary of the plaque-
tte, hence it is a good indicator of the position and the
topological charge of Weyl points. We use this technique
to find Weyl points in the configuration space of System
A.

In the main text, we have analyzed the chirality flip
effect, which has been recently predicted in the context
of electronic band structure theory, and which is an ef-
fect promoted by certain symmetries of the crystal. In
the rest of the section, we discuss the symmetry proper-
ties of System A, which promote the chirality flip effect
illustrated in Fig. 2d.

Let us consider a control vector t such that the system
has mirror symmetry upon the reflection along the y axis
for any α = β. For such a mirror-symmetric setting, the
elastic potential has the symmetry

Ut(x, y;α, β) = Ut(−x, y;β, α). (A15)

Denote the equilibrium position of the mass for angle val-
ues (α, β) as (xαβ0 , yαβ0 ). Then, it holds that (xβα0 , yβα0 ) =

(−xαβ0 , yαβ0 ). Equation (A15) creates a relation between
the partial derivatives of the potential at (α, β) and (β, α)

∂xUt(β, α)
∣∣∣
(xβα

0 ,yβα
0 )

=

= lim
h→0

Ut(x
βα
0 + h, yβα0 ;β, α)− Ut(x

βα
0 , yβα0 ;β, α)

h
=

= lim
h→0

Ut(−xβα0 − h, y
βα
0 ;α, β)− Ut(−xβα0 , yβα0 ;α, β)

h
=

= lim
h→0

Ut(x
αβ
0 − h, y

αβ
0 ;α, β)− Ut(x

αβ
0 , yαβ0 ;α, β)

h
=

= −∂xUt(α, β)
∣∣∣
(xαβ

0 ,yαβ
0 )

. (A16)

Similarly, it can be shown that the sign of the par-
tial derivative of the potential with respect to y does not
change upon the interchange of the angles. From this, we
conclude that only the mixed second-order partial deriva-
tive ∂x∂yUt changes sign upon the exchange on the an-
gles. These relations imply that the dynamical matrix

Dt(β, α) is related to Dt(α, β) as shown in Eq. (2). This
means that the diagonal entries are identical, while the
sign of the off-diagonal entries is flipped. As a conse-
quence, the eigenvalues of the Dt(β, α) and Dt(α, β) are
the same, hence the spectrum is symmetric to the α = β
line. Due to the sign change of the off-diagonal entry of
the dynamical matrix upon interchanging the angles, the
topological charges of the symmetry-related Weyl points
are the same. Recall that the above is valid only in case
of a mirror-symmetric control parameter t. If the mirror
symmetry is broken, then the spectrum is not symmetric
anymore.

Appendix B: The spectrum of System B

In this section, we discuss the calculation of the eigen-
frequency spectrum of the small oscillations in System
B.

The three point masses of System B are characterized
by 6 coordinates. We collect the displacements of the
masses with respect to their equilibrium coordinates into
a single vector X = (x1, y1, x2, y2, x3, y3)T . Furthermore,
we define the three-component vector S = (S1, S2, S3)

T

that contains the spring elongations, with Si being pos-
itive if the i-th spring is stretched and negative if it is
compressed.

In the linear approximation, the spring elongations
are linear functions of the displacements, i.e., S = RX,
where R is a real matrix of size 3 × 6, to be specified
below. Finally, we define the vector of spring forces
F = (F1, F2, F3). The component Fi denotes the force
exerted on the masses by the i-th spring. Each force Fi
is regarded as a real scalar since the spring force vector is
parallel to the spring itself. We use the convention that
Fi is positive when the spring is compressed.

The above definitions imply that F can be expressed
as F = −KS, where K is a real matrix of size 3× 3 that
contains the spring constants

K =

k1 0 0
0 k2 0
0 0 k3

 . (B1)

The spring forces couple to the displacement vector X
via the matrix RT [30]. Then the Newton equations of
motion can be written as

MẌ = RTF = −RTKS = −RTKRX. (B2)

Here M is the mass matrix of the system, namely:

M =


m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m2 0 0 0
0 0 0 m2 0 0
0 0 0 0 m3 0
0 0 0 0 0 m3

 . (B3)
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Figure 4. Normal modes of System B with non-zero eigenfre-
quency. The leftmost normal mode belongs to the fully sym-
metric irreducible representation, while the other two normal
modes belong to the E irrep, which is two-dimensional. These
are differentiated by the eigenvalue of the vertical mirroring
operation. These normal modes have ±1 eigenvalue with re-
spect to this mirroring with the −1 eigenvalue corresponding
to the rightmost normal mode.

As the next step, we make use of the fact that we are
looking for vibrational modes fulfilling Ẍ = −ω2X. Fur-
thermore, we multiply both sides of Eq. (B2) by M−1/2

from the left, to obtain the eigenvalue equation

ω2Y = M−1/2RTKRM−1/2Y, (B4)

where we have introduced the mass normalized eigenvec-
tors Y = M1/2X. The matrix on the right-hand side of
Eq. B4 is the dynamical matrix D of the system. The
mass-normalized eigenvectors enforce the dynamical ma-
trix to be symmetric. Note that up to this point, our
derivation is general, i.e., it does not exploit any symme-
try assumptions for the system.

To solve the above eigenvalue problem we need to de-
termine the matrix R which couples the displacements to
the spring elongations. Using simple trigonometric iden-
tities we obtain

R =

 0 0 cosβ − sinβ − cosβ sinβ
− cosα − sinα 0 0 cosα sinα
−1 0 1 0 0 0

 .

(B5)
We emphasize that we use the notation shown in Fig. 3a.
Using the above form of the matrix R one can evaluate
the matrix product in Eq. (B4) to obtain the dynamical
matrix of the system. The eigenvalues can be calculated
for arbitrary parameter values by numerical diagonaliza-
tion of the dynamical matrix. The eigenfrequencies of
the system are the square roots of the eigenvalues.

If all the masses, springs, and angles are identical, then
the symmetry group of the system is D3 [31]. Since this
group does have a 2-dimensional irrep, the spectrum of
System B may have a 2-fold eigenfrequency degeneracy
– and indeed, this is the case.

In terms of irreps, one vibrational mode belongs to
the irrep A1, which implies that this mode is symmetric
under all symmetry operations of the symmetry group.
This is the so-called breathing mode and it has the highest
vibrational frequency ω =

√
3k
m . We used the simplified

notation k andm because here, we consider the case when
all the springs and masses are identical.

The other two vibrational modes belong to the E irrep,
which is two-dimensional, meaning that these modes are
degenerate. Their common eigenfrequency is ω =

√
3k
2m .

These normal modes are shown in Fig. 4.
The remaining 3 normal modes have zero eigenfre-

quency. These normal modes correspond (i) to the trans-
lation of the whole system along the x and y directions
and (ii) to the rotation of the whole system along its
center of mass. In terms of irreps, the two normal modes
(i) transform between each other under the operations
of D3 hence correspond to the E irrep, while the sin-
gle normal mode (ii) corresponds to the A2 irrep as the
displacements change sign upon the reflection.

We are interested in how the finite-frequency degener-
acy of the modes of the E irrep (shown in Fig. 4) splits as
the parameters of the system are changed. To describe
this splitting, we utilize quasi-degenerate perturbation
theory (Schrieffer-Wolff transformation) [32] to derive an
effective 2 × 2 dynamical matrix in the degenerate sub-
space.

Due to the symmetry of the setup, we use the simplified
notation m

(0)
1 = m

(0)
2 = m

(0)
3 ≡ m and k

(0)
1 = k

(0)
2 =

k
(0)
3 ≡ k, and fix α = β = π/3. Now we introduce

the configuration-space detunings (mass detunings) ∆m1

and ∆m2, which split the twofold degeneracy. Note that
the dynamical matrix, defined via Eq. (B4), depends on
the masses only via the mass matrix M , and the mass
detunings change only the first 4 diagonal elements inM .

The diagonal entries of the matrix M−1/2 are of the
form 1/

√
m+ ∆mi for i ∈ {1, 2} (while ∆m3 = 0).

Then, we Taylor expand these entries up to the second
order as

1√
m+ ∆mi

≈ 1

m1/2
− 1

2

∆mi

m3/2
+

3

8

∆m2
i

m5/2
. (B6)

We do this because we anticipate that the frequency split-
ting is second order in ∆m1,2. The dynamical matrix can
therefore be approximated as

D ≈
(
M
−1/2
0 +M

−1/2
1 +M

−1/2
2

)
RTKR×

×
(
M
−1/2
0 +M

−1/2
1 +M

−1/2
2

)
, (B7)

where M−1/2
l contains the terms which are proportional

to ∆ml
1,2. For example, M−1/2

1 is the 6 × 6 matrix that
contains the terms in Eq. (B6) that are first order in
∆m1,2, that is,

M
−1/2
1 = − 1

2m3/2


∆m1 0 0 0 0 0

0 ∆m1 0 0 0 0
0 0 ∆m2 0 0 0
0 0 0 ∆m2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .(B8)

As the next step, we expand the brackets in Eq. (B7),
and keep terms only up to the second order in the mass
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detunings. We write the approximate dynamical matrix
as

D ≈ D0 +Dpert, (B9)

with

D0 = M
−1/2
0 RTKRM

−1/2
0 (B10)

and

Dpert = M
−1/2
1 RTKRM

−1/2
0 +M

−1/2
0 RTKRM

−1/2
1 +

+ M
−1/2
2 RTKRM

−1/2
0 +M

−1/2
1 RTKRM

−1/2
1 +

+ M
−1/2
0 RTKRM

−1/2
2 , (B11)

where the first line contains first order terms, while the
second and third line contains second order terms in
∆m1,2. We identify Dpert as a perturbation of D0. This
perturbation causes the degeneracy to split for nonzero
∆m1,2.

To obtain an effective dynamical matrix that accounts
for the splitting of the degenerate normal modes we use
second-order Schrieffer-Wolff perturbation theory, which
folds down the above 6 × 6 dynamical matrix D into a
2 × 2 effective dynamical matrix. For this perturbative
calculation, we need the normal modes of the symmetric
system

Y1 = (1, 0, 1, 0, 1, 0)
T
/
√

3, (B12a)

Y2 = (0, 1, 0, 1, 0, 1)
T
/
√

3, (B12b)

Y3 =

(
1

2
,−
√

3

2
,

1

2
,

√
3

2
,−1, 0

)T
/
√

3, (B12c)

Y4 =

(√
3

2
,−1

2
,−
√

3

2
,−1

2
, 0, 1

)T
/
√

3, (B12d)

Y5 =

(
1

2
,

√
3

2
,

1

2
,−
√

3

2
,−1, 0

)T
/
√

3, (B12e)

Y6 =

(
−
√

3

2
,−1

2
,

√
3

2
,−1

2
, 0, 1

)T
/
√

3. (B12f)

Above, Y1 and Y2 correspond to the zero frequency
(ω1,2 = 0) normal modes associated with the uniform
translations along the x and y directions, respectively.
Y3 has zero eigenfrequency (ω3 = 0) as well and corre-
sponds to the rotation of the molecule around its center
of mass. The Y4 and Y5 normal modes belong to the
E irrep and are degenerate in the symmetric case with
frequency ω4,5 =

√
3k
2m . Finally, Y6 is the breathing

mode that belongs to the A1 irrep. The frequency of this
normal mode is ω6 =

√
3k
m .

Now we expand the D0 and Dpert in the basis defined
by the above normal modes and carry out the second
order Schrieffer-Wolff transformation. In this basis, the
matrix elements of D0 and Dpert are written as

D0
ij = YT

i D
0Yj (B13)

and

Dpert
ij = YT

i D
pertYj . (B14)

Then, the matrix elements of the effective dynamical ma-
trix are

Deff,11 = D0
44 +Dpert

44 +
∑

l=1,2,3,6

Dpert
4l Dpert

l4

ω2
4 − ω2

l

,(B15a)

Deff,12 = D0
45 +Dpert

45 +
∑

l=1,2,3,6

Dpert
4l Dpert

l5

ω2
4 − ω2

l

,(B15b)

Deff,22 = D0
55 +Dpert

55 +
∑

l=1,2,3,6

Dpert
5l Dpert

l5

ω2
4 − ω2

l

,(B15c)

Deff,21 = Deff,12, (B15d)

where we have made use of the fact that ω4 = ω5. Again,
we keep terms only up to second order in ∆m1,2. With
this, we obtain the effective dynamical matrix

Deff =

[
3k

2m
− 1

2

k

m2
(∆m1 + ∆m2)

]
σ0 +

k

m3

(
5
12∆m2

1 − 1
6∆m1∆m2 + 5

12∆m2
2 −

√
3

12 ∆m2
1 +

√
3

12 ∆m2
2

−
√

3
12 ∆m2

1 +
√

3
12 ∆m2

2
1
4∆m2

1 + 1
2∆m1∆m2 + 1

4∆m2
2

)
,(B16)

where σ0 the 2 × 2 identity matrix. The above matrix
describes the splitting of the degenerate normal modes.
The first term is proportional to the identity matrix and
hence causes no splitting between the normal modes. In
contrast, the second term contains σx and σz contribu-
tions as well and depends quadratically on the configu-

ration parameters. We identify the traceless part of the
second term as the effective dynamical matrix D̃eff of
Eq. (5). This effective dynamical matrix is valid only in
the vicinity of the origin.

The symmetry of the system can be broken by chang-
ing the control parameters of the system, for example,
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∆k1 6= 0. In this case, the charge-2 Weyl point splits
into regular Weyl points (a.k.a. charge-1 Weyl points).
In the main text, we have shown results related to these
Weyl points. To find the Weyl points numerically, we use
the method discussed in App. D. of [23]. Then, for each
Weyl point found, we carry out a numerical Schrieffer-
Wolff transformation to obtain the effective dynamical

matrix around the Weyl point. The charge of the Weyl
point is the winding of the vector field defined by the ef-
fective dynamical matrix. Here, it is important to keep
the orientation of the quasi-degenerate subspace fixed as
the control parameters are varied because the winding
of the vector field does depend on the orientation of the
subspace. This orientation can be fixed by choosing the
sign of the normal modes consistently.
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