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1QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
2School of Physics, University of Hyderabad, Hyderabad, India
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We study a hybrid device defined in an InAs nanowire with an epitaxial Al shell that consists of a
quantum dot in contact with a superconducting island. The device is electrically floating, prohibiting
transport measurements, but providing access to states that would otherwise be highly excited and
unstable. Radio-frequency reflectometry with lumped-element resonators couples capacitatively
to the quantum dot, and detects the presence of discrete subgap states. We perform a detailed
study of the case with no island states, but with quantum-dot-induced subgap states controlled
by the tunnel coupling. When the gap to the quasi-continuum of the excited states is small, the
capacitance loading the resonator is strongly suppressed by thermal excitations, an effect we dub
“thermal screening”. The resonance frequency shift and changes in the quality factor at charge
transitions can be accounted for using a single-level Anderson impurity model. The established
measurement method, as well as the analysis and simulation framework, are applicable to more
complex hybrid devices such as Andreev molecules or Kitaev chains.

Andreev bound states [1] and Yu-Shiba-Rusinov
states [2] are the most familiar types of subgap states
(SGSs) observed in Josephson junctions [3, 4], at atoms
on a superconducting surface [5] or in semiconduct-
ing quantum dots (QDs) coupled to superconductors
(SCs) [6, 7]. SGSs, just like electronic states in QDs,
are well localized in space and for odd electron occupancy
have a spin which can be manipulated [8–10]. The ground
state (spin singlet or doublet) depends on the microscopic
details [11, 12]. Electrostatic floating of such a device
consisting of a dot coupled to a superconductor fixes the
total charge, so that the SGS cannot undergo the singlet-
doublet phase transition, thereby enabling access to the
regimes beyond reach of conventional transport measure-
ments. Furthermore, forcing a fixed charge of the system
largely eliminates quasiparticle poisoning that challenges
the realization of qubits based on SGSs [9, 13–15].

In this work we study a SGS formed in a QD coupled
to a SC island defined in an InAs nanowire. The sys-
tem is galvanically isolated and the total charge is fixed.
We couple the QD capacitively to a radio-frequency res-
onator [16] and study the device through its effects on the
resonator response. We propose a simple device model
that is solved using the density matrix renormalization
group (DMRG). We establish that the reactive part of
the device response predominantly originates from the
charge dispersion, i.e. the charge susceptibility of the
instantaneous eigenstates (quantum capacitance). The
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tunneling capacitance, related to the redistribution of oc-
cupancies between the eigenstates during a driving cycle,
is significantly smaller, but the associated relaxation pro-
cess leaves a footprint on the dissipation in the resonator
(Sisyphus resistance) [17].

The device under study consists of a nanowire with
a two-facet epitaxial Al shell [18, 19] selectively etched
away (Fig. 1(a)). Wrapped gates are used to electrostat-
ically divide the wire into segments. The left segment,
1.8 µm long, is operated as a SC island that is tuned by
gate voltage VS . The right segment, 500 nm long, forms
a QD that is tuned by gate voltage VD. The dot and
the island are tunnel coupled with coupling strength t
that is controlled by gate voltage VB (Fig. 1(a,c)). The
side barrier gate voltages VL/R are set to large negative
values (< −2 V) to galvanically disconnect the device
and fix its total charge on a timescale of several minutes
to days. Additionally, the QD plunger gate is attached
to an off-chip spiral inductor resonator [20] (inductance
L = 570 nH; resonance frequency f0 ≈ 368 MHz; internal
and external quality factors Qint ≈ 4000 and Qext ≈ 285,
respectively). Near an interdot charge transition the elec-
tron tunneling between the QD and SC island is enabled,
loading the resonator with an additional capacitance C
and conductance G, see Fig. 1(b) for the effective RLC
network model of the setup[21]. The resonator loading
manifests as a shift of the resonant frequency f0 and a re-
duction of the internal quality factor Qint (Appendix A).

In order to study the formation of a SGS in the QD we
first investigate features indicating whether there are ad-
ditional discrete SGSs formed in the SC island itself. We
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FIG. 1. (a) False-colored SEM of the device nominally iden-
tical to the one measured, schematically illustrating the res-
onator circuit with a bias-tee. (b) An equivalent resonator
circuit. The fixed inductance, capacitance and resistance rep-
resent the spiral inductor resonator. The variable capacitance
and resistance represent the loading of the resonator due to
quantum and tunneling capacitance, and losses in the cou-
pled dot-island system. (c) Cartoon illustrating the density
of states in a superconducting island, and their coupling to
the quantum dot. (d) Schematic energy diagram illustrat-
ing the evolution of the discrete ground state with increasing
tunnel coupling. The gray shaded area represents a quasi-
continuum of states, with an unpaired quasiparticle on the
superconducting island. The red shaded area represents a
range within which the system will likely be thermally ex-
cited to the quasi-continuum.

start at a moderately positive value of VS ≈ 0.25 V and
measure a charge stability diagram by sweeping VS and
VD (Fig. 2(a)). The measurement reveals a pattern of
alternating wider and narrower regions of stable charge
(labeled “E” and “O” , respectively), separated by charge
transitions that are weakly asymmetric with respect to
their maximum. Following Ref. 22 we interpret that nar-
row stability regions “O” correspond to an odd-occupied
island, since SC pairing favors even occupancy of the is-
land. Next, we apply a large negative island gate voltage
VS ≈ −2 V. We expect this to deplete the semiconductor
wire under the Al shell, eliminating any potential subgap
states [19, 23, 24]. The resulting charge stability diagram
shown in Fig. 2(b) exhibits a similar pattern of narrower
and wider regions of charge stability, but the capacitance
at charge transitions has a much smaller magnitude and
exhibits very strong asymmetry, with a sharp edge on
the side of the charge stability regions “O” . Finally,
we tune the barrier gate voltage VB more positive while
keeping VS ≈ −2 V. Fig. 2(c) shows that the resonance
periodicity remains unchanged, however the number of
observed interdot charge transitions is halved, the tran-
sitions are symmetric, and the added capacitance at the

charge transition is increased.

We interpret the three tunings of the device as follows.
For VS ≈ 0.25 V, there are one or several discrete subgap
states in the island (Fig. 2(a)). Since the lowest of these
states as well as the QD-induced subgap state are well
separated from the SC continuum, the charge transitions
exhibit many of the same features as those in double QD
devices [22]. If the semiconductor is depleted, however,
the QD state hybridizes only with the quasicontinuum
above the gap.

Fig. 2(b) represents the case of weak hybridization
(small t) that allows the QD-induced subgap state to
approach the quasicontinuum within <∼ kT . This en-
ables thermal excitation to one of the many states with a
single quasiparticle that is decoupled from the QD, sup-
pressing the capacitance (“thermal screening”). Since for
an odd-occupied island the ground state approaches the
quasicontinuum much more closely (c.f. Fig. 1(d)) the
thermal screening leads to strong asymmetry of charge
transitions.

Fig. 2(c) corresponds to a strong hybridization (large
t) in which case the dot-induced discrete ground state
becomes well separated from the quasicontinuum. This
results in the vanishing of stability regions “O” , leaving
wide charge transitions separating states differing by 2 in
the QD occupancy. In the following, we fix VS = −2 V,
thereby eliminating unintended subgap states, and study
the transition between the weak and strong hybridization
regime in more detail.

Fig. 3 presents a transition between the hybridization
regimes in a single charge stability diagram [25], mea-
sured with respect to dot and barrier gate voltages, VD
and VB . A range of VB is chosen so that the barrier
gate tunes the tunnel coupling with only relatively small
change in VB . The shrinking and vanishing of the stabil-
ity region “O” with increasing VB is highlighted by taking
line cuts through the charge stability diagram (Fig. 3(c)).
As the region “O” shrinks, the magnitude of capacitance
C at the charge transition increases and becomes maxi-
mal when the pair of charge transitions merges.

We propose an intuitive understanding of the region
“O” through an analogy to the singlet-doublet quan-
tum phase transition in the case of the QD coupled to
a grounded SC [6]. In that case, the QD charging energy
U competes with the tunnel coupling Γt to the SC lead.
As the QD level ε is tuned, the limit of Γt � U favors
increments of the QD occupancy in steps of one electron,
switching between the singlet states at even filling and
doublet states at odd filling. In contrast – large tun-
nel coupling (Γt � U) favors increases of QD occupancy
in steps of two electrons and the system remains in the
singlet state at all times. In floating devices with fixed
total charge the total system parity cannot change and
therefore the quantum phase transition does not occur.
Nonetheless, the parity of the QD may change provided a
sufficient amount of thermal energy is available to excite
a quasiparticle to the quasicontinuum of the SC states
with high multiplicity N . As illustrated in Fig. 1(d), for
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FIG. 2. Charge stability diagrams revealed by capacitance C. Panels (a-c) represent three regimes: (a) undepleted semicon-
ductor under the Al shell; (b) depleted semiconductor under the Al shell and small tunnel coupling; (c) depleted semiconductor
and large tunnel coupling. Shared power-law normalization of color maps enables direct comparison. Top panels show the cuts
along the dotted lines, while insets illustrate schematically the energy diagram in each regime (cf. Fig. 1(d)). (d) Close-ups on
peak patterns in the three regimes; color scheme as in the top panels of (a-c).

sufficiently small tunnel coupling the quasicontinuum is
separated from the discrete SGS by δ<∼ ln(N)kBT . Qua-
sicontinuum states do not couple to the resonator, hence
we interpret the sharp edges of the capacitance peaks,
illustrated in Fig. 3(a,c,f), to be due to such thermal
excitations. The shrinking of region “O” is due to in-
creasing δ for increasing Γt. For sufficiently strong Γt
relatively to charging energies, so that δ > ln(N)kT for
any value of VD, the charge transitions merge. In the
following, we model the capacitance and its suppression
to lend support to this interpretation.

We employ a model of a single-level Anderson impurity
coupled to a finite-sized SC, with the Hamiltonian of the
form [12]

Ĥ = εn̂+ Un↓n↑ +
∑
k

εkn̂k +
ESC
2

(∑
k

n̂k − ng

)2

− ξ
∑
k,q

(
c†k↑c

†
k↓cq↓cq↑ + H.c.

)
+ V

∑
k,σ

(
c†kσdσ + H.c.

)
,

(1)

where dσ and n̂(σ) are annihilation and electron num-
ber operators for the impurity, σ =↑, ↓. ckσ is the an-
nihilation operator for island orbital k with energy εk.
ε = αVD is the energy of the impurity level; α – the
lever arm; U – the impurity charging energy; ESC – the
SC island charging energy; ξ – the SC pairing strength;
V – the impurity-bath hopping. The model is solved
using the DMRG method (Supplementary Sec. B). We
compute the charge susceptibilities χg,e for the two low-
est energy states (ground state g and excited state e),
separated in energy by δ. We do not explicitly compute
higher excited states, but instead assume high multiplic-
ity N for the excited state e [26]. We expect N <∼ 108,
estimated based on the number of Al atoms composing
the SC shell.

The quantum capacitance is given by

Cq = Pgχg + (1− Pg)χe, (2)

where Pg = (1 + Ne−δ/kBT )−1 is the equilibrium oc-
cupancy of the ground state at temperature T . Since
χe � χg in the relevant gate voltage range (Supplemen-
tary Fig. C.1), for δ <∼ ln(N)kBT the quantum capac-
itance is strongly suppressed. Assuming the tunneling
capacitance to be small, we fit the experimental data
with a model that takes into account solely the quantum
capacitance contribution, see Fig. 3(c). In the simultane-
ous fit to all curves we use fixed values of ∆ = 250 µeV,
U = 502 µeV and ESC = 196 µeV(estimated from data
presented in Suppl. Fig. F.4), common free parameters α
and T , and separate free parameter Γt for each cut. Fur-
thermore, the fit includes a constraint of Γt effectively
enforcing its monotonous increase with VB . The fit re-
sults are presented with black dashed lines in Fig. 3(c),
and yield α = 0.87, T = 168 mK and N = 1.6 × 103.
Fig. 3(d-f) illustrates for the case of Γt = 30 µeV how a
variable δ translates into Pg that in turn determines the
contribution of the ground-state quantum capacitance to
the total value of C.

In contrast, assuming no thermal excitations we are
neither able to reproduce the magnitude of Cq for all data
sets nor the degree of asymmetry for the most negative
values of VB (see Supplementary Fig. C.1). The obtained
value of T = 168 mK is larger than the base temperature
of our setup (30 mK), which may be related to effectively
increased temperature due to rf excitation, imprecision of
describing the quantum dot as a single-level impurity, or
strong covariance between T and N in the nonlinear fit.

As a consistency check of our interpretation we cal-
culate

∫
CqdVD = Qtot across charge transition pairs,

to yield a quantity we dub the “charge signature” of the
transition (Fig. 3(a,b); Supplementary Section D). In the
absence of thermal screening we expect a charge signa-
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FIG. 3. (a) Capacitance C as a function of the barrier gate voltage VB , revealing the shrinking and vanishing of the charge
stability regions. Dashed lines indicate the position of the cuts through the data (b,c), and the range of the integral Qtot =∫
CqdVD. (b) Signature charge Qtot of the charge transition (pair) as a function of VB . Colored points correspond to the line

cuts and data in (a,c), and black crosses – the corresponding signature charge extracted from the model. Dotted and dashed
lines illustrate the value of 2αe, with the lever arm α extracted from the measurement of the Coulomb diamonds (0.82), and
the model fit (0.87), respectively. (c) Cuts through the data in (a). Solid, colored lines present the experimental data, and
dotted black lines – the fit result. Curves are offset vertically for clarity. (d,e) Excitation energy of the lowest excited state
δ and ground state occupation probability Pg extracted from the model and the fit for Γt = 30 µeV. (f) Simulated quantum
capacitance of the ground state for Γt = 30 µeV(dashed), and the total quantum capacitance (solid) suppressed due to thermal
excitation. (g) Conductance G as a function of the barrier gate voltage VB , extracted from the same raw data as (a).

ture Qtot = 2αe, reflecting the transfer of two electrons
from the QD to the SC island. Indeed, with vanishing
region “O” for most positive VB the value of Qtot ap-
proaches about 1.7e consistent with α extracted from the
fit in Fig. 3(b) and from the Coulomb diamond measure-
ment of the dot (dashed and dotted line, respectively;
Supplementary Fig. F.4). Conversely, for more negative
VB , as the region “O” increases in size Qtot decreases sig-
nificantly, in agreement with the interpretation of the Cq
suppression. We note that in other data sets in which we
observe merging of the charge transitions the charge sig-
nature reaches different maximal values, usually smaller.
We suspect this is related to different lever arms in the
different configurations, but currently lack supporting ev-
idence.

The proposed model is sufficient for modeling capac-
itance, however it neglects the tunneling capacitance.
We conjecture that the tunneling capacitance is much
smaller than quantum capacitance, but associated re-
laxation processes lead to measurable Sisyphus resis-
tance [17, 27], which is revealed as enhanced dissipation
in the resonator. Fig. 3(g) presents the dissipation at
the charge transitions, expressed as the conductance G
extracted from the same data as the capacitance C in
Fig. 3(a,c). For the most negative VB , the peaks in G
coincide with those in C. Unlike the C peaks however,
the G peaks do not quite merge for the most positive

VB . Supplementary Figs. E.2 and F.3 further indicate
that when the VB is increased the peaks vanish rather
than merge. The double peak structure resembles the
result of Ref. [17] that predicts a double-peak for the
Sisyphus resistance at the interdot charge transition for
a single-electron double QD. As a partial validation of
the hypothesis, we extend the model by considering a re-
laxation rate Γ and calculate the dissipation related to
transitions between ground and excited states over one
period of the rf drive. Supplementary Fig. C.1 demon-
strates that we are able to reproduce G of the correct
order of magnitude and that it furthermore exhibits a
double-peak structure. We refrain from further compari-
son to the experimental data, since the relaxation rate Γ
is strongly dependent on both tunnel coupling and dot-
island detuning, which we did not study experimentally.

To conclude we outline possible directions of research
building on our study of a subgap state in a QD coupled
to a SC island by means of dispersive gate sensing. Since
gate sensing has already enabled the development of large
dot arrays and multiqubit manipulation, we envision that
dispersive gate sensing will likewise enable the tuning of
larger arrays and chains of hybrid SC devices, which so
far were two- [28–33] or at most three-sites long [34]. A
particularly appealing direction to pursue is the construc-
tion of synthetic Kitaev chains with topological ground
states [33, 35–37]. By controlling the potential along the
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chain with the help of gate sensing one could measure the
site-resolved local compressibility, which is an equivalent
of the quantum capacitance, and is predicted to peak at
the topological phase transition [38].
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Appendix A: Resonator model and extraction of C
and G

To extract the QD contributions to the resonator
impedance, specifically the capacitance C and the con-
ductance G, we measure the reflection coefficient of a
resonant circuit comprised of a SC spiral inductor (L =
570 nH), parasitic capacitance to ground, and the dot-
island device itself. As illustrated in Fig. 1(b) the res-
onator losses and parasitic capacitance are treated as be-
ing in parallel to C and G of the device. The extraction
of C and G requires the following:

1. an analytical resonator model, describing the com-
plex reflection coefficient S11 as a function of the
resonance frequency f0, internal quality factor Qint
and number of other parameters;

2. an analysis procedure for extracting f0 and Qint
from the measurement of S11:

• if the dependence of S11(f) is measured ex-
plicitly, this role is performed by a nonlinear
fit to the data;

• in case of the fixed-frequency measurement at
known probing frequency f , it is achieved us-
ing the mapping S11 7→ f0, Qint, generated
numerically based on the resonator model and
an individual measurement of S11(f);

3. conversion of changes in f0 and Qint to C and G.

1. Resonator model

In our work we employ the resonator model described
in detail in Ref. [39], and we only summarize it here. The
model consists of three parts.

First, the resonator itself, modeled as a RLC resonator
(with L and C arranged in series) coupled to a 50 Ω
transmission line. Its reflection coefficient S′11 is given
by

S′11(f) = 1− 2QloadQ
−1
ext

1 + 2iQload
(f−f0)
f0

, (A1)

where f is the probing frequency, Qload = (Q−1
int+Q

−1
ext)
−1

is the loaded quality factor, Qint is the internal quality
factor, Qext is the external quality factor, and f0 is the
resonance frequency.

The second element is the low-quality cavity formed
between the resonator and the partially reflective input
of the cryogenic amplifier. The cavity modifies the mea-
sured signal, and can lead to asymmetry in the resonance.
The modified reflection coefficient is given by

S′′11 =
iγα
√

1− γ2e−4πfli/c+iφS′11

1−
√

1− α2(1− γ2)e−4πfli/c+iφS′11

, (A2)

where γ is the coupling coefficient of the used directional
coupler, α is amplifier reflection coefficient, l is length
of the coaxial cables connecting the resonator with the
amplifier, and c is propagation speed of the rf excitation
in the coaxial cables.

Finally, global phase winding, phase offset and
frequency-dependent amplification are taken into ac-
count, modifying the measured reflection coefficient [40]

S11 = A

(
1 +B

f − f0

f0

)
× e−ia+ib(f−f0) × S′′11, (A3)

where A
(

1 +B f−f0
f0

)
accounts for a frequency-

dependent attenuation and amplification, while
e−ia+ib(f−f0) accounts for the phase winding and
offset.

For the procedure of fixing the numerous parameters in
the model we refer the reader to the appendix of Ref. [39].
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2. Conversion of fixed-frequency measurement to
f0 and Qint

While the majority of the presented data is derived
from the full resonator fit to the frequency-dependent
S11, the color maps shown rely on fixed-frequency mea-
surement at the probing frequency f = 368.4 MHz. In
order to convert an individual measurement of the com-
plex value of S11 to f0 and Qint we apply the following
procedure:

1. Perform an individual, high-resolution measure-
ment of S11(f) and fit it with an analytical res-
onator model.

2. Fix all of the model parameters except for f0 and
Qint.

3. Evaluate the expected value of S11 for a dense grid
of (f0, Qint) values.

4. Numerically invert the S11(f0, Qint) function to
generate the mapping S11 7→ (f0, Qint).

5. Verify the uniqueness of the mapping in the rele-
vant range of f0 and Qint values.

6. Apply the mapping to the measured S11 at a fixed-
frequency f .

Fig. A.1 illustrates an example of the mapping S11 7→
(f0, Qint), based on a single resonator measurement from
the full data set, corresponding to the undepleted island
as in Fig. 2(d). In Fig. A.1(a,b), color maps illustrate the
mapping S11 7→ (f0, Qint), red points illustrate the grid
of the (f0, Qint) points, and black points are a scatter
plot of S11 values measured at fixed probing frequency
f , while tuning VD. We note that due to the resonator
asymmetry there is no range of f0, Qint for which the
mapping S11 7→ (f0, Qint) can be separated into two in-
dependent mappings, |S11| 7→ Qint and 6 (S11) 7→ f0, and
thereby the signal magnitude and phase do not indepen-
dently represent resistance and capacitance.

In figure A.1(c,d) we compare the values of f0 and
Qint extracted from the full resonator fit and from the
mapping of individual values of S11(f) at f = 368.4 MHz,
from the same data set. We find agreement between the
two methods, albeit with much higher noise in the case of
fixed-frequency measurements. The correlation between
the f0 and Qint values extracted with the two methods
are presented in the insets of Fig. A.1(a,b). An excellent
correlation justifies the use of this extraction method of
f0 and Qint from the fixed-frequency measurement of S11

[(Fig. 2(a-c) and F.1(a-c)].

3. Conversion of f0 and Qint to C and G

Having converted the measured reflection coefficients
to f0 andQint, we establish their reference values, i.e. the

values fref0 and Qrefint corresponding to C = 0 and G = 0.
For this purpose we use the mean of the values deep in
the Coulomb blockade. Subsequently we calculate

Cq =
1

(2πfref0 )2L
− 1

(2πf0)2L
, (A4)

using the nominal value of L = 570 nH.
We note that the value of Cq extracted in this way

is susceptible to a significant source of potential system-
atic error. Namely, if the width of the charge transitions
becomes comparable to the spacing between them, the
quantum capacitance in the middle of the stability re-
gion may be nonzero. This can lead to Cq values over-
estimated by a constant up to about 100 aF, different
for each data set. This has a particularly important im-
plication for the calculation of the charge signature Qtot,

where an incorrect calibration of fref0 can compound to a
gross underestimation. In the data we present to support
the claim that Qtot saturates at 2αe (Fig. 3), the value

of fref0 is extracted from the 2D data set in Fig. 3(a),
and in particular – based on the most negative values of

VB . There, we expect the fref0 can be extracted most
reliably. Relative to that background, the value of Cq
increases up to 60-70 aF. If this offset is miscalibrated,
the value of Qtot may be underestimated by as much as
bout 70aF× 1.7mV ≈ 0.7e.

To obtain G we first calculate the characteristic
impedance of the resonator Zch = 2πLfref0 . For a res-
onator model as in Fig. 1(b) the total conductance of the
two resistors to ground (one representing losses in the
resonator, another in the dot-island system) is given by
Gtot = 1/ZchQint. Similar to the case of capacitance, we
identify the value of conductance in Coulomb blockade,
Gref , as representing the losses intrinsic to the resonator.
Any increase of conductance above the reference level we
attribute to the contribution of dissipation in the dot-
island: G = Gtot −Gref .

Appendix B: DMRG calculation

The DMRG used to solve the Anderson impurity model
of a QD coupled to a SC island is described in Ref. [12].
The number of island orbitals L is set to 200; further
increase in number does not produce significant gains in
terms of accuracy. All parameter values are given in the
units of half-bandwidth D = 1. For all terms in the
Hamiltonian to have the same operator norm, certain in-
teractions have to be rescaled by the system size. The
one-to-all impurity hopping is thus V = v/

√
L. Hopping

strength is further referred to in terms of L-independent
tunneling rate Γt = πρv2, where ρ is the normal-state
density of states. The all-to-all SC pairing strength is
ξ = x/L, where we choose x = 0.4. This determines the
SC gap ∆ = 0.165, which allows us to relate the calcula-
tion to experiment. x is chosen such that an appropriate
number of levels participate in SC pairing while still min-
imizing the effect of finite bandwidth.
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The Hamiltonian (1) can be represented in the MPO
(matrix product operator) form with 9 × 9 matrices,
which allows for efficient and exact calculations. The
maximal matrix dimension of the matrix product state
during optimization sweeps is 3000, while the energy cut-
off (the lowest Schmidt value retained during the singu-
lar value decomposition step) is 10−10. Such calculations
take on the order of a few hours and ensure very good
convergence of all physical properties.

The output of the DMRG calculation are the ener-
gies of the ground and first excited state and their QD
occupations. The occupations are used to obtain the ca-
pacitance as detailed in Appendix C, while the energy
difference between the two states enters the Boltzmann
weight in thermal screening.

The code with examples is available on Zenodo [41].

Appendix C: Derivation of the effective capacitance
and resistance from DMRG results

In this section we derive the response of the charge
accumulated on the dot plunger gate as a result of the
dot charge responding to small cosine voltage excitation,

and interpret it as an effective capacitance and resis-
tance loading the radio frequency resonator, analogously
to Ref. [17].

First, we assume that the excited states can be effec-
tively described by a collection of N degenerate states,
at the energy of the lowest excited state. Fig. C.1, sum-
marizing the outputs of DMRG calculation and the cal-
culations below, illustrates that in the regime where the
population of excited states is appreciable the quantum
capacitance of the lowest excited state is small, and the
higher excited states are only expected to have lower ca-
pacitance. This is the critical observation leading to a
thermal suppression of capacitance, and justifying the
simplified treatment of excited state as N -fold degener-
ate.

Under this assumption, charge accumulated on the
gate is

Q = α|e|(Pgng + Pene) (C1)

where Pg/e is the occupation probability of the ground
and excited state, ng/e is the dot charge in the ground
and excited state, α is the plunger-gate lever arm and e is
the unit charge (negative). The functional form of ng and
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FIG. C.1. Reproduction of the data from Fig. 3, alongside the intermediate output of the model. (a) Measured capacitance; (b)
Total quantum capacitance fitted to the data (identical to dashed lines in Fig. 3(c)); (c) Quantum capacitance of the ground
state; (d) Quantum capacitance of the lowest excited states. The noise in the data (visible also in (b)) corresponds to numerical
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ne versus plunger gate voltage is obtained by the DMRG
calculation described in the previous section (Sec. B).

We assume that the plunger gate voltage has a DC
and an AC part VD(t) = V 0

D + V ACD sin(ωt), where V 0
D

is a DC offset while V ACD is the amplitude of the driving
AC signal. Next, we obtain Pg(t) by solving the master
equation governing the time evolution of the occupation
probabilities

Ṗg(t) = −NΓ↑(t)Pg(t) + Γ↓(1− Pg(t)), (C2)

where Γ↑(t) (Γ↓(t)) is the uphill (downhill) relaxation
rate

Γ↓(t) ≡ Γ↓(δ(t)) = Γ (1 + nB(δ(t), T )) ,

Γ↑(t) ≡ Γ↑(δ(t)) = ΓnB(δ(t), T ),
(C3)

nB is the Bose-Einstein function

nB(δ, T ) =
1

eδ/kBT − 1
, (C4)

Γ is the zero-temperature downhill relaxation rate, and
δ(VD(t)) is the splitting between the ground and the ex-
cited state.

Expanding Γ↓,↑, ng,e and δ linearly around V 0
D we look

for linear-response steady-state solutions of the differen-
tial equation (Eq. C2) of the form

Q(t) = C sin(ωt)V ACD − 1

Rω
cos(ωt)V ACD . (C5)

In the solution we identify the resistance and capaci-
tance which may be expressed as

C = −α2Pg0|e|2n′g − α2(1− Pg0)|e|2n′e

+ α2(ne0 − ng0)|e|2
−
[
Pg0NΓ′↑ − (1− Pg0)Γ′↓

]
ω2 + (NΓ↑0 + Γ↓0)

2 (NΓ↑0 + Γ↓0) ,

(C6)

1

R
= α2(ne0 − ng0)|e|2

−
[
Pg0NΓ′↑ − (1− Pg0)Γ′↓

]
ω2 + (NΓ↑0 + Γ↓0)

2 ω2.

(C7)

where symbol ′ denotes derivative d•/dε
∣∣∣
ε0

and subscript

“0” denotes value of the parameter at ε = ε0 = αV 0
D.

In Eq. C6 we identify the first line as the quantum
capacitance, and the second one as the tunneling capac-
itance. Only the tunneling capacitance depends on the
relaxation rates that are not explicitly known (they likely
depend in a complex manner on ε, Γt and δ). There-
fore, as mentioned in the main text, we perform the fit
to the data only using the quantum capacitance contri-
bution, and infer the presence of tunneling capacitance
indirectly, through qualitative features, similar between
the measured effective conductance and inverse of the
calculated effective resistance (Eq. C7). This is a pos-
teriori justified by a successful fit and the observation
that the tunneling capacitance may indeed be assumed
smaller than the quantum capacitance contribution.
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Appendix D: Charge signature of the transitions

In Fig. 3(c) we integrate numerically the measured ca-
pacitance from the center of the charge transition (pair)
V 0
D to VD

Q(VD) =

VD∫
V 0
D

C(ṼD)dṼD, (D1)

and in Fig. 3(d) we present the integral of capacitance
across the full charge transition pair Qtot. This quanti-
ties will be used to quantify to what extent the system is
trapped in a state that does not contribute to the mea-
sured capacitance.

In the effective capacitance picture, C consists of two
contributions – so-called quantum and tunneling capaci-
tance [17].

Quantum capacitance is the contribution that arises
from the adiabatic response of the system to the oscil-
lating AC voltage on the gate attached to the resonator.
One can consider this contribution, by considering each
eigenstate of the system, labeled by subscript i, with
energy Ei(VD), to be occupied with certain probability
pi(VD). Collectively they contribute

Cq(VD) =
∑
i

pi
d2E

dV 2
D

=
∑
i

pi
dQi
dVD

= α
∑
i

pi(VD)Ci.

(D2)
Here, Qi(VD) represents the expected value of charge on

a dot for i-th eigenstate, α – a lever arm between the dot
and the gate, and Ci – capacitance associated with each
eigenstate. In particular, if the ground state is occupied
with probability p0(VD) = 1 (at zero temperature), it
immediately follows that

V B
D∫

V A
D

Cq( ˜V )DdṼD = α(Q0(V BD )−Q0(V AD )). (D3)

In particular, integrating between the middle of the sta-
bility regions with charge different by 2e should yield
Qtot = 2αe.

On the other hand, the tunneling capacitance results
from redistribution of pi between the eigenstates over a
single period of an AC excitation, and is affected by a rate
at which the system reaches the thermal equilibrium, rel-
ative to the drive frequency. In particular, in the limit of
the equilibration rate being much greater than the drive
frequency

C(VD) = α
d〈Q(VD)〉

dVD
, (D4)

where 〈Q(VD)〉 represents the average dot charge in ther-
mal equilibrium. Also in this case integrating between
the middle of the stability regions with charge different
by 2e should yield Qtot = 2αe.

For our experiment, we conclude that the reduction of
Qtot below value of 2αe can be attributed to the system
being trapped in an excited state, and unable to respond
to the gate voltage changes at a timescale compared to
the period of a drive frequency. Gradual increase of Qtot
from nearly 0 to Qtot ≈ 2αe shows that the suppression of
the signal by excitation of the system to quasi-continuum
occurs to the lesser extent. As illustrated in Fig. 1(d),
this is due to the tunnel coupling increasing the energy
gap between the discrete and the quasi-continuum, mak-
ing the limit T → 0 increasingly adequate.

Appendix E: Compositing procedure for barrier gate
sweep

Due to poor device stability it was not possible to ac-
quire the data set equivalent to Fig. 3 without switches
line-to-line. To overcome it we identified a bistable re-
gion, where we judged the tunnel coupling to change
nearly monotonously. In that range we performed 11
identical sweeps (Fig. E.1) that were then combined to
generate two data sets with switches eliminated – Fig. 3
and Fig. E.2.

The compositing was performed line-by-line, along the
VB axis. We start with the top line from an arbitrarily
chosen data set. Then as (i+ 1)st line we select the line
from the data set that has the maximum correlation with
the previous, i th, line.

The composite data in Fig. 3 (“A”) and Fig. E.2 (“B”)
were composited starting with the top row of data set 9
and 11, respectively. The code used for composting is
provided in the linked repository.

Appendix F: Supplementary data

Fig. F.1 presents extracted effective conductance of
the dot island in the three regimes: depleted island and
closed barrier, depleted island and open barrier, and un-
depleted island. These data sets correspond, panel-by-
panel, to C presented in Fig. 2.

Fig. F.2 presents a data analogous to cuts in Fig. 2, ex-
cept capacitance and conductance is extracted from full
fit of the reflection coefficient as a function of frequency.
This provides better signal-to-noise ratio, but does not al-
low to track an individual charge transition pairs due to
device instabilities throughout the longer measurement
time.

Fig. F.3 presents additional charge stability diagrams
as a function of dot plunger gate voltage VD and barrier
gate voltage VB . While the measurement ranges in all
data sets are similar, the data sets represent somewhat
different tunings of the dot-island, due to device instabil-
ity and hysteresis. The exception is the Data set 3 and
data presented in 3, which were measured immediately
after. Dashed line in Data set 3 outlines edges of the
range of the data in 3(a,e).
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FIG. D.1. A data analogous to Fig. 3, in for the island plunger gate voltage set to VS = 0.25 V to accumulate electrons away
from the Al shell, and create an additional subgap state. (a) A capacitance of the floating dot-island as a function of the barrier
gate voltage VB . Dashed lines indicate position of the cuts through the data (b-d). (b) Signature charge Qtot of the charge
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respectively. (c) Cuts through the data in (a). (d) Cuts through the effective conductance data in (c.f. (e)). Before taking the
cuts we apply a smoothing Gaussian filter, elongated in the direction along the charge transitions in order to increase a SNR.
(e) An effective conductance of the floating dot-island as a function of the barrier gate voltage VB , extracted from the same
raw data as (a). Dashed lines indicate position of the cuts in (b-d).
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Fig. F.4 presents Coulomb diamonds of the SC is-
land (a) and semiconducting dot (b). Due to poor gal-
vanic contact of the nanowire to one of the metallic leads
there was no measurable DC transport through the de-
vice, and the Coulomb diamonds were measured using

rf-conductance with an additional spiral inductor res-
onator (L = 730 nH, f0 ≈ 313 MHz) attached to the lead
on the right side of the QD, which presumably couples
through the weak galvanic link thanks to relatively large
capacitance. This leads to very asymmetric Coulomb
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FIG. E.2. A data complementary to Fig. 3, for the second state of the TLS. (a) A capacitance of the floating dot-island as
a function of the barrier gate voltage VB , illustrating shrinking and vanishing of the charge stability regions. Dashed lines
indicate position of the cuts through the data (b-d). (b) Signature charge Qtot of the charge transition (pair) as a function
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the data in (a). (d) Cuts through the effective conductance data in (c.f. (e)). Before taking the cuts we apply a smoothing
Gaussian filter, elongated in the direction along the charge transitions in order to increase a SNR. (e) An effective conductance
of the floating dot-island as a function of the barrier gate voltage VB , extracted from the same raw data as (a). Dashed lines
indicate position of the cuts in (b-d).

diamonds, in which we associate the vertical spacing be-
tween the linear features with (twice) a charging energy.
In a separate measurement (inset) we verify that the pe-
riodicity of the Coulomb diamonds in (a) corresponds

to 2e charging of the island. Extracted charging en-

ergies (defined as e2/C
D/S
Σ ) are EDC = 0.50 meV and

ESC = 0.20 meV.
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L. Grünhaupt, J. J. Wesdorp, Y. Liu, L. P. Kouwenhoven,
R. Aguado, B. van Heck, et al., Direct manipulation of a
superconducting spin qubit strongly coupled to a trans-
mon qubit, arXiv preprint arXiv:2208.10094 (2022).

[11] J. C. E. Saldaña, A. Vekris, L. Pavešič, P. Krogstrup,
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in superconducting islands, Physical Review B 104,
L241409 (2021).

[13] A. Zazunov, V. Shumeiko, E. Bratus, J. Lantz, and
G. Wendin, Andreev level qubit, Physical review letters



12

-2.002 -2.000 -1.998
VS (V)

1.000

1.002

1.004

V D
 (V

)
(a) depleted island, closed barrier

0.000
0.001

  G
 (e

2 /h
)

-2.002 -2.000 -1.998
VS (V)

0.996

0.998

1.000

(b) depleted island, open barrier

0.000
0.001

0.248 0.250 0.252
VS (V)

0.998

1.000

1.002

(c) undepleted island

0.000

0.005

0

0.001
0.002
0.004

0.008

   
   

  G
 (e

2 /h
)

-0.5 0.0 0.5
VS V0

S  (mV)

0.000

0.002

0.004

0.006
(d)

FIG. F.1. Effective conductance a floating dot-island in three regimes, corresponding to the C measurements presented in
Fig. 2. The three regimes in (a-c) are: (a) depleted semiconductor under aluminum shell and small tunnel coupling; (b)
depleted semiconductor and large tunnel coupling; (c) undepleted semiconductor under the aluminum shell. Shared power-law
normalization of color maps was chosen to enable direct comparison of data sets. Top panels show the cut through the data and
use 3-point moving average to smooth the data. (d) Zoom in at an individual charge transition, or pair of charge transitions
in the three regimes. The colors used for plotting the data correspond to the colors used in the top panels of (a-c).

-0.5 0.0 0.5
VD V0

D (mV)

0

200

400

600

800

C 
(a

F)

(a)

-0.5 0.0 0.5
VD V0

D (mV)

0
2
4
6
8

10
12
14
16
18

G
 (1

0
3  e

2 /h
)

(b)

FIG. F.2. Data equivalent to Fig. 3. The raw data included
a complete frequency sweep at every gate setting, resulting in
lower noise in the extracted value of G, at the cost of signifi-
cantly increased measurement time.

90, 087003 (2003).
[14] C. Janvier, L. Tosi, L. Bretheau, Ç. Girit, M. Stern,
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